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Abstract

In this paper, the problem of fault diagnosis in multiprocessor sys-

tems is considered under a uniformly probabilistic model in which pro-

cessors are faulty with probability p. This work focuses on minimizing

the number of tests that must be conducted in order to correctly diag-

nose the state of every processor in the system with high probability.

A diagnosis algorithm that can correctly diagnose the state of every

processor with probability approaching one in a class of systems per-

forming slightly greater than a linear number of tests is presented. A

nearly matching lower bound on the number of tests required to achieve

correct diagnosis in arbitrary systems is also proven. The number of

tests required under this probabilistic model is shown to be significantly

less than under a bounded-size fault set. model. Because the number of

tests that must be conducted is a measure of the diagnosis overhead,

these results represent a dramatic imp_ovement in the performance of

system-level diagnosis techniques.

1 Introduction

In this paper, the fault diagnosis capabilities of multiprocessor systems in the pres-

ence of permanently faulty processors are examined. This problem has been well

studied under the assumption that the number of faulty processors in the system

is bounded by some value t. It has been shown that nt tests are necessary and

sufficient to correctly diagnose a system of n processors in this situation [1]. The

results of this paper will show that under a probabilistic model in which processors

are faulty with probability p independently of one another that correct diagnosis
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o(.. tests where oo (arbitrarilyslowZy)as n Thus, in the
bounded-size fault set model a quadratic number of tests are required to diagnose a

linear number of faults while under this probabilistic model a linear expected num-

ber of faults can be diagnosed with high probability using a number of tests growing

slightly faster than n.

The problem of multiprocessor system diagnosis in the presence of permanent

faults has been addressed from a probabiIisti_: viewpoint in several papers I2,3,4].

The first paper concerning probabilistic diagnosis [2] examined heterogeneous sys-

tems in which each processor has an associated probability of failure. The authors

examined the class of systems known as p-prc, babilistically diagnosable systems in

which any fault set that has probability gre_ter than or equal to p of occurring

is uniquely diagnosable. The problem of determining whether a given system is

p-probabilistically diagnosable has been showrl to be co-NP-complete [3] while an

O(n 3) algorithm has been given [4] for deter_-nining the most likely fault set of a

system in the closely related weighted model.

In p-probabilistically diagnosable systems_ fault sets with probability of occur-

rence slightly less than p can exist. Hence, the most likely fault set may be only

slightly more probable than the next most lik_ly fault set, meaning that the proba-

bility of choosing the wrong fault set may be relatively high. In [5], the author exam-

ined systems for which the correct fault set c_.n be identified with high probability.

The model utilized applies to homogeneous svstems in which each processor has a

common probability of failure p. An efficient diagnosis algorithm was presented that

correctly diagnoses a class of systems containing cn log n tests, for c > 1/(log 1/p),

with probability approaching one.

It was also claimed in [5] that this result, was the best possible, i.e. that all

algorithms must have probability approachir_g zero of achieving correct diagnosis

in systems containing o(nlog n) tests. Unfortunately, due to a subtle flaw in the

proof, this result is untrue. This result was also used in [6] to prove a similarly

flawed lower bound in a more general probabilistic model. A counterexample to

the lower bound in [5] is given in which corre::t diagnosis is achieved with constant

probability in a sequence of digraphs contair_ing n - 1 tests. Also in this paper a

diagnosis algorithm that produces correct diagnosis with probability approaching

one in digraphs containing slightly more th;_n a linear number of tests is given.

Finally, a nearly matching lower bound on t}_e number of tests required to achieve

correct diagnosis with probability approaching one is proven.



2 Preliminaries

The fundamental multiprocessor system model utilized in this paper was proposed

in [7]. In this model a system is represented as a directed graph with vertices of the

digraph representing processors in the system and edges of the digraph representing

tests performed by one processor on another processor. In this section, all basic

quantities related to this model are defined and methods of diagnosis algorithm

performance evaluation are examined.

2.1 Basic Definitions

For a system composed of n processors, the ._et of processors will be represented

by U = (ul,..., un}. It is assumed that these processors are capable of performing

tests on one another. This situation will be represented by a digraph G(U, E), where

the vertex set U corresponds to the set of processors of the system and (u, v) E E

if and only if processor u tests processor v in the system. Associated with each

(u,v) E E is a test outcome. This outcome will be a 1(0) if u evaluates v as faulty

(fault-free). A complete collection of test outcomes constitutes a syndrome. Below

syndromes, fault sets, and other fundamental concepts are formally defined.

Definition 1 For a digraph G(U, E), a syndrome is a function from E to {0, 1).

Definition 2 For a digraph G(U, E), a fault set is a subset of the vertex set U.

Definition 3 For a digraph G(U,E) and u ,5 U, the tester set of u, denoted by

P-l(u), is given by

r-l(u) = (.e u: (v,u) e E)

Definition 4 For a digraph G(U, E), a syndrome S, and u E U, the failure set of

u, denoted by A_,(u), is given by

= {ve r-'(u) s((v, u)) = 1)



2.2 Diagnosis Algorithm Evaluation

A fundamental problem in multiprocessor systems is to identify the faulty proces-

sors in a system given a syndrome. An algorithm for this problem is referred to as

a diagnosis algorithm. In much of the previous work in the system-level diagnosis

area, diagnosis algorithm evaluation has focused on worst-case performance. Under

a bounded-size fault set model, correct diagnosis can be guaranteed if the number

of faulty processors in the system is no greater than some value t < n/2. Since this

bound can only be satisfied with a given probability, a better measure of diagnosis

algorithm performance is the probability that it correctly identifies the faulty pro-

cessors in the system under a probabilistic model for the faults and test outcomes

in a system. Such a model is presented in this paper.

A diagnosis algorithm takes a syndrome a:3 input and outputs a subset of the

processors in the system. This subset contains exactly the processors diagnosed

as faulty by the algorithm. Thus, for a set of faulty processors and a syndrome

it is possible to evaluate if the output of a deterministic algorithm is correct by

comparing the algorithm's output with the set of faulty processors. Syndrome, fault

set pairs are therefore used as the basic element in the subsequent probabilistic

analysis of diagnosis algorithm performance. Before proceeding with this analysis

however, the notion of correct diagnosis must be formally defined. For a syndrome

S from a digraph G(U, E), and a deterministi.= algorithm A, let

FaultyA(S) = {u 6 U : Algorithm A diag_mses u as faulty when run on S}

Thus, FaultyA(S) represents the output of Algorithm A when run on syndrome S.

With this, the diagnosis of an algorithm on a syndrome, fault set pair is characterized
in Definition 5.

Definition 5 For a syndrome, fault set pair (S, F) from a digraph G(U, E), a de-

terministic algorithm A is said to produce

correct diagnosis ff and only if FauIQ,'A(S) = F,

partial diagnosis if and only if FaultyA(S) C F, and

false alarm diagnosis if and only if F_:ultyA(S) g F.

Note that Definition 5 differs from that used in some previous work where correct

diagnosis may include faulty processors that z_-reidentified as fault-free so long az no

fault-free processor is identified as faulty. In Definition 5, diagnosis is correct only

when each fault-free processor is identified as fault-free and each faulty processor is

identified as faulty.
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3 Probabil stic Model

In this section, a probabilistic model for the behavior of a multiprocessor system is

presented. In this model, processors are faulty with probability p, fault-free proces-

sors always produce the correct outcome when performing a test, and no assumptions

are made concerning the outcomes of tests performed by faulty processors. It will

be shown in this paper that in contrast to the bounded-size fault set model, correct

diagnosis can be achieved with high probability in this model at relatively low cost.

For a digraph G(U, E), the sample space cf this probability model will consist

of all syndrome, fault set pairs in that digraph. Formally,

f2c(u,E) = {(S, F) : F C U and S is a function from E to {0, 1}}.

Since no assumptions have been made concerr_ing the outcomes of tests performed

by faulty processors, the probability of a particular syndrome given a fault set

may not be specified in this model. The basic events of the model consist of sets

of syndrome, fault set pairs which have the same fault set and whose syndromes

are identical except for the labels on edges c,ut of faulty processors. Formally, a

syndrome, fault set pair (S t, F t) is contained in a basic event B defined as follows:

B = {(S,F): F = F' and V(u, v) e E with u e U- F, S((u,v))= S'((u,v))}

Note that there is a unique fault set associated with each basic event but that each

event may contain many distinct syndrome, fault set pairs. Now, let

Bc(cr,E) = {B : B is a basic event of G(U, E)}.

The family of events 7c(cr,g) in this probability space is the set of all subsets of

_a(U,E). For a basic event B from a digraph ,::,_(U,E), let

E_o = {(u,v) eE:V(S,F)eB, uq=_U-FandveU-F} and

Eo, = ((u, v) e E: V(S,F) e B, g - F and v e

These sets represent respectively, the set of edges that must be labeled zero (fault-

free processors testing fault-free processors) and the set of edges that must be labeled

one (fault-free processors testing faulty processors). Given these sets, the probability

of a basic event B in a digraph G(U, E) is defined as follows:

{ Oif3(u,v) eEcos.t..V(S,F)EB, S((u,v))=l or
Pa(B)= 3(u,v) eE¢ls.t.V(S,F)eB, S((u,v))=O

plf'l(1 - p)n-If'l otherwise



where F' represents the unique fault set associated with B. The condition for which

a basic event has zero probability of occurrence is simply a check to make sure that

no fault-free processor produces an incorrect test outcome. Clearly,

Z: Po(S)--:1
BEE

and, hence, this is a legitimate probability me_ure.

The primary measure of the performance ,)f a diagnosis algorithm used in this

paper will be the probability that the algorithm produces correct diagnosis as defined

in Definition 5. For a digraph G(U, E) and a deterministic algorithm A, let

CorrectG(A) = ((S, F): FaultyA(S ) = F}

and let NotCorrecte(A) represent the complement of Correctc(A). Thus,

CorrectG(A) represents the set of all syndrome, fault set pairs in a digraph for

which Algorithm A produces correct diagnosi.'_. Note that it may be the case that

CorrectG(A) _ _ra in which case Pe(Correcte(A)) will not be defined. The output

of a particular diagnosis algorithm may depem'l on the outcomes of tests performed

by faulty processors and thus, the probability of correct diagnosis for the algorithm

cannot be determined until a probability distribution on these edges is specified.

For a digraph G(U, E), let PG' be a probability function defined on fig such that

the family of events is equal to all subsets of flc and VB e Bc, Pc_(B) - Pc(B).

Such a probability function will be referred to as a refinement of Pc- Now, let

PG represent the set of all refinements of P¢.. Since any type of behavior of the

faulty processors is allowed in this model, the-' probability of correct diagnosis for a

deterministic algorithm A in a digraph G(U, Z), denoted by PCDG(A) is defined to
be

PCDG(A)= min PG'(Correctc(A))= rain _ Pc'((S,F))
P_;' E 2c; P¢;' E Pe; ( S,F )_Correct_( A )

Thus, when calculating the probability of correct diagnosis for an algorithm it is as-

sumed that the faulty processors perform their tests in the manner most detrimental

to the algorithm. Given a syndrome S, a ra_-Ldom diagnosis algorithm A chooses a

fault set F with some probability call it pA,.q(F) where _-_.FCUPA,S(F) : 1. Thus,

for a digraph G(U, E) and a random diagnosis algorithm A, the probability of correct

diagnosis for Algorithm A is defined to be

PCDG(A) - min _ Pa'((S,F))'pA,s(F)
P(;'_Po (S,F)Efl(_

"4



4 Diagnosis Below n log n Edges

In [5], a powerful and efficient diagnosis algorithm that achieves correct diagnosis

with probability approaching one in sequences of digraphs containing cn log n edges,

for c > 1/(log l/p), was presented. In this section, the question of whether correct

diagnosis is possible in digraphs containing o(n log n) edges is considered. In partic-

ular, a sequence of digraphs containing n - 1 edges is exhibited for which a simple

diagnosis algorithm can achieve correct diagnc, sis with constant probability.

Consider a sequence of digraphs G,,(U,,, F,,) with Un --= {ul,...,un} and E,_
defined as follows:

z. :

i.e. Ul tests all other processors. Now, con.sider the following simple diagnosis

algorithm.

Algorithm Naive

Input: A syndrome S in a digraph G(U, E).

Output: Aset F_C U.

F_0

for each v e {us,u3,...,un}

if S((UhV))= 1 then F 4-- FU {v}

Algorithm Naive simply assumes that ua is fault-free and diagnoses a processor

as faulty if and only if it is failed by ul. Clearly, if ul is faulty, Algorithm Naive

incorrectly diagnoses ul itself. If ul is fault-free however, Algorithm Naive produces

correct diagnosis. Thus, VPc, I E 2a.

P¢ '(Correcta.(Naive)) = Pa.'{{(S, F): ul is fault-free})

= 1 - it

and therefore

PCDc. (Naive) .... 1 - p.

Thus, this simple diagnosis algorithm produce:_ correct diagnosis with constant prob-

ability in a sequence of digraphs containing exactly n - 1 edges.

The digraphs of the given sequence are c_._mposed of one processor testing the

remaining processors. It will be shown that this highly irregular structure whereby

some processors conduct a large number of tests while others may not conduct



anyis commonto all systemsof o(n log n) edges that can be diagnosed with high

probability. In Section 6, a class of irregular digraphs possessing a number of edges

growing just faster than n is given for which correct diagnosis can be achieved with

probability approaching one. In Section 7, it is shown that a linear number of edges

is required to achieve correct diagnosis with high probability in arbitrary digraphs.

5 A Simple Majority-Vote Algorithm

In this section, a simple yet powerful diagnosis algorithm known as Algorithm Ma-

jority is presented. In Algorithm Majority a processor is diagnosed as faulty if and

only if it is failed by more than 1/2 the processors in its tester set.

Algorithm Majority

Input: A syndrome S in a digraph G(U, E).

Output: A set F C_U.

for each uEU

if IAin(u)l > rlf-22-(_ then F _ F W {u}2

Theorem 1 For a digraph G(U, E), Algorithm Majority has a time complexity of

O(IEI)and a spacecomplexityof O(IEI).

Proof'. The failure set cardinalities as well as the tester set cardinalities can be

calculated in a single traversal of the labeled adjacency lists of the digraph. This

requires O([E[) time. The only storage requirement for the algorithm aside from the

input and output is temporary variables to ho;d these vaIues as they are calculated.

Hence, the space complexity is also (]El). |

Algorithm Majority is slightly more sophis_.icated than Algorithm Naive. Rather

than blindly believing the test outcomes of a single processor, it relies on a majority-

vote among the processors in the tester set of a given processor. It should be noted

that for the special class of systems in which one processor tests every other processor

and no other tests are conducted, Algorithms Naive and Majority are equivalent.

Intuitively, when p < 1/2 the majority of processors in the system are fault-free and

Algorithm Majority should correctly diagnose most of the processors in the system.

In the next section, the performance of Algorithm Majority is considered in detail.

"4
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6 Performance of Algorithm Majority

In this section, it is shown that for a class of irregularly structured systems utilizing

a number of tests growing just faster than n, Algorithm Naive correctly diagnoses

every processor with probability approaching (_ne. The exact number of tests re-

quired by Algorithm Majority to achieve a given probability of correct diagnosis on

systems in this class is also examined.

6.1 Asymptotic Results

Consider a class of systems in which there is a set of processors known as the testers.

The systems are such that any processor which is a tester tests all other processors

in the system. Any processor that is not a tester conducts no tests. Thus, a (small)

fraction of the processors are relied upon to s_Ltisfy all the testing requirements of

the system. Such a digraph will be referred to as a tester digraph, formally defined

below.

Definition 6 A digraph G(U, E) is said to be a tester digraph if and only if

_TG C_ U such that

E : {(u,,) Tc, U, and u #

The set TG is known as the testing set of G.

Figure 1 is an example of a tester digraph with 3 testers and 8 vertices. Assume

that more than 1/2 the testers in a tester digraph are fault-free. Clearly, more

than 1/2 the tests conducted on any processo: that is not a tester will be accurate

and each such processor will be correctly diagnosed by Algorithm Majority. Now,

consider any tester t. If t is faulty, more tl'_an 1/2 the processors testing it are

fault-free and will fail it, meaning that t will be correctly diagnosed by Algorithm

Majority. If t is fault-free, at least 1//2 the processors testing it are fault-free and will

pass it: Since t is not failed by a majority of i_s tester set, it will again be correctly

diagnosed by Algorithm Majority. Hence, if _nore than 1/2 the testers in a tester

digraph are fault-free, Algorithm Majority produces correct diagnosis. Theorem 2

shows that if the number of testers is given by any function that increases with

n, this condition will be achieved with probability approaching one and hence the

probability of correct diagnosis for Algorithm Majority approaches one. In order to

prove this result the following corollary [8] to a theorem proved by Chernoff [9] is

needed.

Corollary 1 Let Y be a binomial random variable with parameters n and p. Then

P(Y <_ cnp) < e -(1-e)2"*p/_, O< c_< 1

"4



', Testing Set _.._ \ ._r_

Figure I: A Tester Digraph

P(Y > cnp) <_ e -(_-1)2"_p/3, c > 1

Theorem 2 Let Gn(Un, E.) be a sequence of tester digraphs on n vertices with

testing sets TG. satisfying Ircol = _(-), where:_(-) --. oo as. -_ oo. Ifp < 1/2,

then PCDe. (Majority) -_ 1 as n ---*oo.

Proof: Let

GoodMajG.
ITc. I and V(u, v) 6 Ec0{(s, F): ITcon (U. - _)1 > --T-

S((u, v)) = 0 and _(u, v) 6 Zcl,S((u, v)) -- 1}

Clearly,

V 'and therefore, PG. E 2a.

Pc. ' (CorrectG. (Majority))

GoodMajG" C_Correct_:,.(Majority)

> P6",, ' (G oodMaje. )

= 1- _'-" (ITG"])(l-p)iplr';"z_.,i
i ::0

I-i

10



Now,sincep < 1/2

ITc.I = c(i - p)ITG,,I,c < 1
2

and thus by Corollary 1,

Pa,'(Correcta, (Majority)) __ J._ ,l[e_(i_ol_/lj(i-p)<_(,',)
"--> 3

Therefore

PCDe_ (Majority) _ 1.

I

Thus, Algorithm Majority produces correct diagnosis with probability approach-

ing one in a class of digraphs containing a number of edges given by n. w(n), where

ca(n) is any function that increases with n. This is an extremely promising result be-

cause under a bounded-size fault set model a qtladratic number of tests are required

to withstand a linear number of faults while this shows that in this probabilistic

model a linear expected number of faults can be tolerated with a number of tests

that is arbitrarily close to linear.

6.2 Concrete Bounds

In this section, the number of tests required to achieve a given probability of correct

diagnosis in tester digraphs using Algorithm Majority is examined. For a tester

digraph G(U, E) with testing set Tc

PCDo (Majority) >__ ) (1)

Note tfiat the probability of correct diagnosis depends only on the testing set cardi-

nality and not on n. For a given probability of failure, Inequality 1 can be used to

determine the number of testers needed for Algorithm Majority to achieve a specific

probability of correct diagnosis. The size of the testing set required to achieve a

correct diagnosis probability of 0.99 for various values ofp is shown in Table 1. If the

probability of failure of a processor is 0.01, Algorithm Majority can achieve correct

diagnosis with a probability of 0.99 using a single test per processor regardless of

the number of processors in the system. This corresponds exactly to the example

given in Section 4 where a single tester tests every other processor in the system.

Hence, the total number of tests utilized in this situation is n - 1. For a probability

of failure of 0.1 the tester set need only be cf cardinality 5 for Algorithm Majority

11
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Table 1: Size of Testing Set Required for

Correct Diagnosis Probability of 0.99

[ n l p [Bounded-size

100 0.01 4C

lOO o.io 18c
100 0.30 41C

1000 0.01 180C

i000 0.10 1230C

1000 0.30 3340C

Probabilistic

99

495

3069

999

4995

30969

Table 2: Total Number of Tests Necessary for Correct Diagnosis

Probability of 0.99

to achieve a probability of correct'diagnosis o" 0.99. Thus, when the probability of

failure _s small correct diagnosis can be achieved with high probability using a total

number of tests that is near n. When p is near 1/2, more tests are necessary. Since

nearly 1/2 the processors in the system will be faulty in this situation it is to be

expected that a larger number of tests are required. The important point is that

the total number of tests remains proportioned to n regardless of the value of p.

These results can be compared with the number of tests required under the

bounded-size fault set model in the following manner. For a given n and p, determine

t such that the probability of more than t out of the n processors being faulty is no

greater than 0.01. Table 2 shows the results oC this comparison for various values of

n and p. For large n and small p the number of tests required under the probabilistic

12
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model is dramatically lower than the number required under the bounded-size fault

set model. For example, when n = 1000 and p "- 0.01, the number of tests required

in the probabilistic model is reduced by a factor of 18 over the bounded-size fault
set model.

7 A Lower Bound on the Number of Tests Necessary

for Correct Diagnosis

In this section, a lower bound on the number of tests necessary to achieve correct

diagnosis with high probability is proven. It is shown that if the number of edges in

an arbitrary sequence of digraphs grows slower than n then all diagnosis algorithms

have probability approaching zero of achieving correct diagnosis. This result implies

that Algorithm Majority achieves a probability approaching one of correct diagnosis

on systems that are very nearly as sparse as _._ossible. Thus, this relatively simple

diagnosis algorithm is indeed extremely powerful.

When the number of edges in a sequence of digraphs grows slower than n, iso-

lated processors must exist. Intuitively, no diagnosis algorithm should be capable

of correctly identifying the state of all these isolated processors with high probabil-

ity, making diagnosis in such situations impossible. This is formally proven in the

Theorem 3. The essence of the proof of Theorem 3 can be explained quite simply.

To prove that a deterministic diagnosis algorithm A has a probability approaching

zero of achieving correct diagnosis in a sequence of digraphs Gn(Un, En), a set of

(S, F) pairs disjoint from Corrects, (A) mus; be exhibited that has a probability

dominating the probability of Correcta,(A). For a given syndrome with isolated

vertices, it can be shown that so long as the number of isolated vertices approaches

infinity, the probability of that syndrome and a fault set with a particular labeling of

the isolated vertices is dominated by the probability of that syndrome and the fault

sets in which the isolated processors are relabeled in all possible ways. Thus, for any

(S, F) E Correctc, (A), a set of syndrome, fault set pairs disjoint from Correctc. (A)

can be exhibited that has probability dominating the probability of (S, F). It is also

shown that there exists a deterministic diagnosis algorithm that has performance

at least as good as the performance of any random algorithm, thus completing the

proof.

Theorem 3 Let Gn(Un, En) be a sequence of digraphs on n vertices with

0 < p < 1 and IEnl E o(n). For any random or deterministic diagnosis algorithm

A, PCDc.(A) _ 0 as n _ oo.

Proof: Assume 3n0, c > 0, and a deterministic algorithm A such that Vn z no,

13



PCDG.(A) > c. This implies that gPc..' E Pc,,, and Vn > no,

Pc.'CCorrectc. CA)) > c.

Now, let ISOG. C__. represent the set of isolated vertices in G.(U., E.). Clearly,

IIsoo.I > .- 21J_.l_ oo.

For a syndrome, fault set pair (S, F) E Correcta. (A) let

Relabel(s,F ) = {(S',F') : S' = S,F' _ F, and F - ISOo. = F' - ISOc.}

and let

AllLabel(s,F) = Relabel_s,F) U {(S, F)}.

Thus, Relabel(s,F ) consists of the syndrome, fault set pairs in which the processors
of ISOo. are relabeled in all possible ways. Clearly, VPc,,' E Pc.

Po.'( Not CorrectG. (A))

>__ _ Za.'(Relabel(s,F))
(S,F)ECo_._t_.. CA)

: _ [PG.'CA]lI,abe](s,F))- Pc.'CCS, F))]
( S,F )6Correc_G. (A}

and since all processors in the set ISOG. are isolated,

Pa.'((S, F)) = plZSO_.nFl(1 -- p)lISO';'"n(U"-F)lPG.'(AllLabel(s,f}).

Therefore, VPG.' 6 Pc.

(s,F)eCovr.ct,;. CA)

and thus

Pc.'(AllLabel,:s,F})

= :C P_,.'((S,F))
(S,F)6Correct,_. (A} plZSO,_,,",FI (1 -- p)IISO,_, n(tr.-F)l

> P.Cs,e)_co._._,_.C.)Pc.'((s, Y))
- [max(p, 1 - p)] tls°':"l

Pa.'(NotCorrecto.(A))

( ' ) 'S- Pc. ((,F))
> [max(p, 1 - p)lllSO_.l 1 C

( S,F )6 Correct,;. (A )

14



So, by assumption VPG,,' E 2G. and Vn _> no

Pc,,' (NotCorrectc. (A))
I - imax(p,1- p)]l so,,.I>

- [max(p, 1 - p)]lISO,_.l
.¢

This is clearly a contradiction, implying that for any deterministic diagnosis algo-
V 'rithm A and PG. E ?G.,

PG.'(Corrects. --, O.

Thus, for any algorithm A

PCDc. (A)--* 0

as well. Now, consider any random diagnosis algorithm A. Then, VPc.' E Pc.

PCDG. (A) < _ PG,'((S,F))'PA,s(F)
(S,Y)eflc.

Consider the deterministic algorithm A' that for any syndrome S chooses fault set

F such that VF _ C U.

Pc.'((S,F)) > PG.,'((S,F')).

Then, if S represents the set of all syndrome._ in G_

PCDc,, (A) _< _ PG.'((S, FaultyA,(S)))'PA,s(F)

(S,F)_ao. '

= _ _ PG.'((S, FaultyA,(S))).Ps,s(F)
SE$ FC_U_

= _ PG.'((S, FaultyA,(S))) _ PA,s(F)
SE$ FOg.

= Pc.'(CorrectG. (A'))

--+ 0

!

This proof, in fact, yields a stronger res,alt than is stated in Theorem 3 in the

following sense. The probability of correct diagnosis is defined as the minimum

probability over all possible behaviors of the faulty processors. The result given in

Theorem 3 is shown to be true for all refinements, meaning that no matter how the

faulty processors act, no algorithm will be capable of achieving correct diagnosis

with high probability.

15



8 Diagnosis in Regular Systems

The study of regular systems is important for several reasons. First, in many appli-

cation areas such as VLSI circuitry, regular designs are easily and efficiently imple-

mentable. Furthermore, the majority of existing multiprocessor systems possess a

regular structure. Finally, the maximum number of tests conducted by any proces-

sor is one measure of the overhead required to achieve fault tolerance. For a fixed

total number of tests, regular systems require the minimum overhead under this

measure.

The diagnosis algorithm given in [5] was shown to achieve correct diagnosis with

probability approaching one in a class of regular systems known as D1.k systems that

conduct cn log n tests, for c > 1/(log I/p). Furt.hermore, it was proven in [10] under

a more general probability model that all diagnosis algorithms must have probability

approaching zero of correct diagnosis in regular systems where the number of tests

grows more slowly than n log n. This more general probability model contains the

model utilized in this paper as a special case and hence this result holds for this

model as well. Thus, for the important class of regular systems the algorithm given

in [5] is optimal to within a constant factor. Th_s also demonstrates that the irregular

structure of the tester digraphs studied in thie paper are a crucial factor in making

them amenable to diagnosis.

9 Conclusion

A uniformly probabilistic fault model for multiprocessor systems in which processors

are faulty with probability p has been studied. It has been shown that correct

diagnosis can be achieved with probability approaching one in a class of systems

that conducts slightly more than a linear number of tests using a simple and efficient

diagnosis algorithm. It has also been shown that this result is very close to the best

possible, i.e. that in systems conducting a number of tests that grows more slowly

than n all diagnosis algorithms, whether they be deterministic or random must have

a probability approaching zero of correct diagnosis.
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